skoot.preprocessing
.SelectiveMinMaxScaler¶
-
class
skoot.preprocessing.
SelectiveMinMaxScaler
(cols=None, as_df=True, trans_col_name=None, **kwargs)[source][source]¶ Transforms features by scaling each feature to a given range. (applied to selected columns).
This estimator scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one.
The transformation is given by:
X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min
where min, max = feature_range.
The transformation is calculated as:
X_scaled = scale * X + min - X.min(axis=0) * scale where scale = (max - min) / (X.max(axis=0) - X.min(axis=0))
This transformation is often used as an alternative to zero mean, unit variance scaling.
Read more in the User Guide.
This class wraps scikit-learn’s MinMaxScaler. When a pd.DataFrame is passed to the
fit
method, the transformation is applied to the selected columns, which are subsequently dropped from the frame. All remaining columns are left alone.Parameters: cols : array-like, shape=(n_features,), optional (default=None)
The names of the columns on which to apply the transformation. If no column names are provided, the transformer will be fit on the entire frame. Note that the transformation will also only apply to the specified columns, and any other non-specified columns will still be present after the transformation.
as_df : bool, optional (default=True)
Whether to return a Pandas
DataFrame
in thetransform
method. If False, will return a Numpyndarray
instead. Since most skoot transformers depend on explicitly-namedDataFrame
features, theas_df
parameter is True by default.trans_col_name : str, unicode or iterable, optional
The name or list of names to apply to the transformed column(s). If a string is provided, it is used as a prefix for new columns. If an iterable is provided, its dimensions must match the number of produced columns. If None (default), will use the estimator class name as the prefix.
feature_range : tuple (min, max), default=(0, 1)
Desired range of transformed data.
copy : boolean, optional, default True
Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array).
Attributes
min_ (ndarray, shape (n_features,)) Per feature adjustment for minimum. Equivalent to min - X.min(axis=0) * self.scale_
scale_ (ndarray, shape (n_features,)) Per feature relative scaling of the data. Equivalent to (max - min) / (X.max(axis=0) - X.min(axis=0))
.. versionadded:: 0.17 scale_ attribute.data_min_ (ndarray, shape (n_features,)) Per feature minimum seen in the data .. versionadded:: 0.17 data_min_ data_max_ (ndarray, shape (n_features,)) Per feature maximum seen in the data .. versionadded:: 0.17 data_max_ data_range_ (ndarray, shape (n_features,)) Per feature range (data_max_ - data_min_)
seen in the data .. versionadded:: 0.17 data_range_See also
minmax_scale
- Equivalent function without the estimator API.
Examples
>>> from sklearn.preprocessing import MinMaxScaler >>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]] >>> scaler = MinMaxScaler() >>> print(scaler.fit(data)) MinMaxScaler(copy=True, feature_range=(0, 1)) >>> print(scaler.data_max_) [ 1. 18.] >>> print(scaler.transform(data)) [[0. 0. ] [0.25 0.25] [0.5 0.5 ] [1. 1. ]] >>> print(scaler.transform([[2, 2]])) [[1.5 0. ]]
Methods
fit
(X[, y])Fit the wrapped transformer. fit_transform
(X[, y])Fit to data, then transform it. get_params
([deep])Get parameters for this estimator. set_params
(**params)Set the parameters of this estimator. transform
(X)Transform a test dataframe. -
__init__
(cols=None, as_df=True, trans_col_name=None, **kwargs)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y=None, **fit_kwargs)[source]¶ Fit the wrapped transformer.
This method will fit the wrapped sklearn transformer on the selected columns, leaving other columns alone.
Parameters: X : pd.DataFrame, shape=(n_samples, n_features)
The Pandas frame to fit. The frame will only be fit on the prescribed
cols
(see__init__
) or all of them ifcols
is None. Furthermore,X
will not be altered in the process of the fit.y : array-like or None, shape=(n_samples,), optional (default=None)
Pass-through for
sklearn.pipeline.Pipeline
. Even if explicitly set, will not change behavior offit
.
-
fit_transform
(X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
Returns: X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: self
-
transform
(X)[source]¶ Transform a test dataframe.
Parameters: X : pd.DataFrame, shape=(n_samples, n_features)
The Pandas frame to transform. The operation will be applied to a copy of the input data, and the result will be returned.
Returns: X : pd.DataFrame, shape=(n_samples, n_features)
The operation is applied to a copy of
X
, and the result set is returned.