skoot.preprocessing.SelectiveMaxAbsScaler

class skoot.preprocessing.SelectiveMaxAbsScaler(cols=None, as_df=True, trans_col_name=None, **kwargs)[source][source]

Scale each feature by its maximum absolute value. (applied to selected columns).

This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity.

This scaler can also be applied to sparse CSR or CSC matrices.

New in version 0.17.

This class wraps scikit-learn’s MaxAbsScaler. When a pd.DataFrame is passed to the fit method, the transformation is applied to the selected columns, which are subsequently dropped from the frame. All remaining columns are left alone.

Parameters:

cols : array-like, shape=(n_features,), optional (default=None)

The names of the columns on which to apply the transformation. If no column names are provided, the transformer will be fit on the entire frame. Note that the transformation will also only apply to the specified columns, and any other non-specified columns will still be present after the transformation.

as_df : bool, optional (default=True)

Whether to return a Pandas DataFrame in the transform method. If False, will return a Numpy ndarray instead. Since most skoot transformers depend on explicitly-named DataFrame features, the as_df parameter is True by default.

trans_col_name : str, unicode or iterable, optional

The name or list of names to apply to the transformed column(s). If a string is provided, it is used as a prefix for new columns. If an iterable is provided, its dimensions must match the number of produced columns. If None (default), will use the estimator class name as the prefix.

copy : boolean, optional, default is True

Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array).

Attributes

scale_ (ndarray, shape (n_features,)) Per feature relative scaling of the data. .. versionadded:: 0.17 scale_ attribute.
max_abs_ (ndarray, shape (n_features,)) Per feature maximum absolute value.
n_samples_seen_ (int) The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across partial_fit calls.

See also

maxabs_scale
Equivalent function without the estimator API.

Examples

>>> from sklearn.preprocessing import MaxAbsScaler
>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> transformer = MaxAbsScaler().fit(X)
>>> transformer
MaxAbsScaler(copy=True)
>>> transformer.transform(X)
array([[ 0.5, -1. ,  1. ],
       [ 1. ,  0. ,  0. ],
       [ 0. ,  1. , -0.5]])

Methods

fit(X[, y]) Fit the wrapped transformer.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform a test dataframe.
__init__(cols=None, as_df=True, trans_col_name=None, **kwargs)[source]

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, **fit_kwargs)[source]

Fit the wrapped transformer.

This method will fit the wrapped sklearn transformer on the selected columns, leaving other columns alone.

Parameters:

X : pd.DataFrame, shape=(n_samples, n_features)

The Pandas frame to fit. The frame will only be fit on the prescribed cols (see __init__) or all of them if cols is None. Furthermore, X will not be altered in the process of the fit.

y : array-like or None, shape=(n_samples,), optional (default=None)

Pass-through for sklearn.pipeline.Pipeline. Even if explicitly set, will not change behavior of fit.

fit_transform(X, y=None, **fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters:

X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns:

X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:

deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns:self
transform(X)[source]

Transform a test dataframe.

Parameters:

X : pd.DataFrame, shape=(n_samples, n_features)

The Pandas frame to transform. The operation will be applied to a copy of the input data, and the result will be returned.

Returns:

X : pd.DataFrame, shape=(n_samples, n_features)

The operation is applied to a copy of X, and the result set is returned.