skoot.feature_selection
.MultiCorrFilter¶
-
class
skoot.feature_selection.
MultiCorrFilter
(cols=None, threshold=0.85, method='pearson', as_df=True)[source][source]¶ Remove highly correlated features.
Multi-collinear data (features which are not independent from one another) can pose problems in coefficient stability for parametric models, or feature importance scores for non-parametric models.
This class filters out features with a correlation greater than the provided threshold. When a pair of correlated features is identified, the mean absolute correlation (MAC) of each feature is considered, and the feature with the highest MAC is discarded.
Parameters: cols : array-like, shape=(n_features,), optional (default=None)
The names of the columns on which to apply the transformation. If no column names are provided, the transformer will be
fit
on the entire frame. Note that the transformation will also only apply to the specified columns, and any other non-specified columns will still be present after transformation.threshold : float, optional (default=0.85)
The threshold above which to filter correlated features
method : str, optional (default=’pearson’)
The method used to compute the correlation, one of (‘pearson’, ‘kendall’, ‘spearman’).
as_df : bool, optional (default=True)
Whether to return a Pandas
DataFrame
in thetransform
method. If False, will return a Numpyndarray
instead. Since most skoot transformers depend on explicitly-namedDataFrame
features, theas_df
parameter is True by default.Attributes
drop_ (array-like, shape=(n_features,)) Assigned after calling fit
. These are the features that are designated as “bad” and will be dropped in thetransform
method.mean_abs_correlations_ (list, float) The corresponding mean absolute correlations of each drop_
nameExamples
The following demonstrates a simple multi-correlation filter applied to the iris dataset.
>>> from skoot.datasets import load_iris_df >>> >>> X = load_iris_df(include_tgt=False) >>> mcf = MultiCorrFilter(threshold=0.85) >>> mcf.fit_transform(X).head() sepal length (cm) sepal width (cm) petal width (cm) 0 5.1 3.5 0.2 1 4.9 3.0 0.2 2 4.7 3.2 0.2 3 4.6 3.1 0.2 4 5.0 3.6 0.2
Methods
fit
(X[, y])Fit the multi-collinearity filter. fit_transform
(X[, y])Fit to data, then transform it. get_params
([deep])Get parameters for this estimator. set_params
(**params)Set the parameters of this estimator. transform
(X)Transform a test dataframe. -
__init__
(cols=None, threshold=0.85, method='pearson', as_df=True)[source][source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y=None)[source][source]¶ Fit the multi-collinearity filter.
Parameters: X : pd.DataFrame, shape=(n_samples, n_features)
The Pandas frame to fit. The frame will only be fit on the prescribed
cols
(see__init__
) or all of them ifcols
is None. Furthermore,X
will not be altered in the process of the fit.y : array-like or None, shape=(n_samples,), optional (default=None)
Pass-through for
sklearn.pipeline.Pipeline
. Even if explicitly set, will not change behavior offit
.
-
fit_transform
(X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
Returns: X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: self
-
transform
(X)[source]¶ Transform a test dataframe.
Parameters: X : pd.DataFrame, shape=(n_samples, n_features)
The Pandas frame to transform. The operation will be applied to a copy of the input data, and the result will be returned.
Returns: X_select : pd.DataFrame, shape=(n_samples, n_features)
The selected columns from
X
.
-