skoot.feature_selection
.BaseFeatureSelector¶
-
class
skoot.feature_selection.
BaseFeatureSelector
(cols=None, as_df=True)[source][source]¶ Base class for feature selectors.
The base class for all skoot feature selectors, the _BaseFeatureSelector should adhere to the following behavior:
- The
fit
method should only fit the specified columns (since it’s also aSelectiveMixin
), fitting all columns only whencols
is None. - The
fit
method should not change the state of the training frame. - The transform method should return a copy of the test frame,
dropping the columns identified as “bad” in the
fit
method.
Parameters: cols : array-like, shape=(n_features,), optional (default=None)
The names of the columns on which to apply the transformation. If no column names are provided, the transformer will be
fit
on the entire frame. Note that the transformation will also only apply to the specified columns, and any other non-specified columns will still be present after transformation.as_df : bool, optional (default=True)
Whether to return a Pandas
DataFrame
in thetransform
method. If False, will return a Numpyndarray
instead. Since most skoot transformers depend on explicitly-namedDataFrame
features, theas_df
parameter is True by default.Methods
fit
(X[, y])Fit the transformer. fit_transform
(X[, y])Fit to data, then transform it. get_params
([deep])Get parameters for this estimator. set_params
(**params)Set the parameters of this estimator. transform
(X)Transform a test dataframe. -
__init__
(cols=None, as_df=True)[source][source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y=None)[source]¶ Fit the transformer.
Default behavior is not to fit any parameters and return self. This is useful for transformers which do not require parameterization, but need to fit into a pipeline.
Parameters: X : pd.DataFrame, shape=(n_samples, n_features)
The Pandas frame to fit.
y : array-like or None, shape=(n_samples,), optional (default=None)
Pass-through for
sklearn.pipeline.Pipeline
.
-
fit_transform
(X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
Returns: X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: self
-
transform
(X)[source][source]¶ Transform a test dataframe.
Parameters: X : pd.DataFrame, shape=(n_samples, n_features)
The Pandas frame to transform. The operation will be applied to a copy of the input data, and the result will be returned.
Returns: X_select : pd.DataFrame, shape=(n_samples, n_features)
The selected columns from
X
.
- The