skoot.decomposition.SelectiveTruncatedSVD

class skoot.decomposition.SelectiveTruncatedSVD(cols=None, as_df=True, trans_col_name=None, **kwargs)[source][source]

Dimensionality reduction using truncated SVD (aka LSA). (applied to selected columns).

This transformer performs linear dimensionality reduction by means of truncated singular value decomposition (SVD). Contrary to PCA, this estimator does not center the data before computing the singular value decomposition. This means it can work with scipy.sparse matrices efficiently.

In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in sklearn.feature_extraction.text. In that context, it is known as latent semantic analysis (LSA).

This estimator supports two algorithms: a fast randomized SVD solver, and a “naive” algorithm that uses ARPACK as an eigensolver on (X * X.T) or (X.T * X), whichever is more efficient.

Read more in the User Guide.

This class wraps scikit-learn’s TruncatedSVD. When a pd.DataFrame is passed to the fit method, the transformation is applied to the selected columns, which are subsequently dropped from the frame. All remaining columns are left alone.

Parameters:

cols : array-like, shape=(n_features,), optional (default=None)

The names of the columns on which to apply the transformation. If no column names are provided, the transformer will be fit on the entire frame. Note that the transformation will also only apply to the specified columns, and any other non-specified columns will still be present after the transformation.

as_df : bool, optional (default=True)

Whether to return a Pandas DataFrame in the transform method. If False, will return a Numpy ndarray instead. Since most skoot transformers depend on explicitly-named DataFrame features, the as_df parameter is True by default.

trans_col_name : str, unicode or iterable, optional

The name or list of names to apply to the transformed column(s). If a string is provided, it is used as a prefix for new columns. If an iterable is provided, its dimensions must match the number of produced columns. If None (default), will use the estimator class name as the prefix.

n_components : int, default = 2

Desired dimensionality of output data. Must be strictly less than the number of features. The default value is useful for visualisation. For LSA, a value of 100 is recommended.

algorithm : string, default = “randomized”

SVD solver to use. Either “arpack” for the ARPACK wrapper in SciPy (scipy.sparse.linalg.svds), or “randomized” for the randomized algorithm due to Halko (2009).

n_iter : int, optional (default 5)

Number of iterations for randomized SVD solver. Not used by ARPACK. The default is larger than the default in randomized_svd to handle sparse matrices that may have large slowly decaying spectrum.

random_state : int, RandomState instance or None, optional, default = None

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

tol : float, optional

Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD solver.

Attributes

components_ (array, shape (n_components, n_features))
explained_variance_ (array, shape (n_components,)) The variance of the training samples transformed by a projection to each component.
explained_variance_ratio_ (array, shape (n_components,)) Percentage of variance explained by each of the selected components.
singular_values_ (array, shape (n_components,)) The singular values corresponding to each of the selected components. The singular values are equal to the 2-norms of the n_components variables in the lower-dimensional space.

See also

SelectiveIncrementalPCA, SelectiveKernalPCA, SelectiveNMF, SelectivePCA

Notes

SVD suffers from a problem called “sign indeterminacy”, which means the sign of the components_ and the output from transform depend on the algorithm and random state. To work around this, fit instances of this class to data once, then keep the instance around to do transformations.

References

Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) https://arxiv.org/pdf/0909.4061.pdf

Examples

>>> from sklearn.decomposition import TruncatedSVD
>>> from sklearn.random_projection import sparse_random_matrix
>>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42)
>>> svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42)
>>> svd.fit(X)  
TruncatedSVD(algorithm='randomized', n_components=5, n_iter=7,
        random_state=42, tol=0.0)
>>> print(svd.explained_variance_ratio_)  
[0.0606... 0.0584... 0.0497... 0.0434... 0.0372...]
>>> print(svd.explained_variance_ratio_.sum())  
0.249...
>>> print(svd.singular_values_)  
[2.5841... 2.5245... 2.3201... 2.1753... 2.0443...]

Methods

fit(X[, y]) Fit the wrapped transformer.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform a test dataframe.
__init__(cols=None, as_df=True, trans_col_name=None, **kwargs)[source]

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, **fit_kwargs)[source]

Fit the wrapped transformer.

This method will fit the wrapped sklearn transformer on the selected columns, leaving other columns alone.

Parameters:

X : pd.DataFrame, shape=(n_samples, n_features)

The Pandas frame to fit. The frame will only be fit on the prescribed cols (see __init__) or all of them if cols is None. Furthermore, X will not be altered in the process of the fit.

y : array-like or None, shape=(n_samples,), optional (default=None)

Pass-through for sklearn.pipeline.Pipeline. Even if explicitly set, will not change behavior of fit.

fit_transform(X, y=None, **fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters:

X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns:

X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:

deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params : mapping of string to any

Parameter names mapped to their values.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns:self
transform(X)[source]

Transform a test dataframe.

Parameters:

X : pd.DataFrame, shape=(n_samples, n_features)

The Pandas frame to transform. The operation will be applied to a copy of the input data, and the result will be returned.

Returns:

X : pd.DataFrame, shape=(n_samples, n_features)

The operation is applied to a copy of X, and the result set is returned.

Examples using skoot.decomposition.SelectiveTruncatedSVD