skoot.base
.BasePDTransformer¶
-
class
skoot.base.
BasePDTransformer
(cols=None, as_df=True)[source][source]¶ The base class for all Pandas frame transformers.
Provides the base class for all skoot transformers that require Pandas dataframes as input.
Parameters: cols : array-like, shape=(n_features,), optional (default=None)
The names of the columns on which to apply the transformation. If no column names are provided, the transformer will be fit on the entire frame. Note that the transformation will also only apply to the specified columns, and any other non-specified columns will still be present after the transformation.
as_df : bool, optional (default=True) Whether to return a Pandas
DataFrame
in thetransform
method. If False, will return a Numpyndarray
instead. Since most skoot transformers depend on explicitly-namedDataFrame
features, theas_df
parameter is True by default.Examples
The following is an example of how to subclass a BasePDTransformer:
>>> from skoot.base import BasePDTransformer >>> class A(BasePDTransformer): ... def __init__(self, cols=None, as_df=None): ... super(A, self).__init__(cols, as_df) ... >>> A() A(as_df=None, cols=None)
Methods
fit
(X[, y])Fit the transformer. fit_transform
(X[, y])Fit to data, then transform it. get_params
([deep])Get parameters for this estimator. set_params
(**params)Set the parameters of this estimator. -
__init__
(cols=None, as_df=True)[source][source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(X, y=None)[source][source]¶ Fit the transformer.
Default behavior is not to fit any parameters and return self. This is useful for transformers which do not require parameterization, but need to fit into a pipeline.
Parameters: X : pd.DataFrame, shape=(n_samples, n_features)
The Pandas frame to fit.
y : array-like or None, shape=(n_samples,), optional (default=None)
Pass-through for
sklearn.pipeline.Pipeline
.
-
fit_transform
(X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
Returns: X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
-